Search results for " 47A10"

showing 6 items of 6 documents

Operators on Partial Inner Product Spaces: Towards a Spectral Analysis

2014

Given a LHS (Lattice of Hilbert spaces) $V_J$ and a symmetric operator $A$ in $V_J$, in the sense of partial inner product spaces, we define a generalized resolvent for $A$ and study the corresponding spectral properties. In particular, we examine, with help of the KLMN theorem, the question of generalized eigenvalues associated to points of the continuous (Hilbertian) spectrum. We give some examples, including so-called frame multipliers.

Partial inner product spacesPure mathematicsGeneral MathematicsFOS: Physical sciencesresolventLattice (discrete subgroup)01 natural sciencessymbols.namesakeInner product spaceSettore MAT/05 - Analisi MatematicaPIP-spaceframe multipliers}lattices of Hilbert spacesSpectral analysis0101 mathematicsEigenvalues and eigenvectorsMathematical PhysicsMathematicsResolventframe multipliers010102 general mathematicsSpectrum (functional analysis)Spectral propertiesHilbert spaceMathematical Physics (math-ph)010101 applied mathematicssymbolsspectral properties of symmetric operatorsSpectral theory46Cxx 47A10 47B37
researchProduct

Interior Eigenvalue Density of Jordan Matrices with Random Perturbations

2017

International audience; We study the eigenvalue distribution of a large Jordan block subject to a small random Gaussian perturbation. A result by E. B. Davies and M. Hager shows that as the dimension of the matrix gets large, with probability close to 1, most of the eigenvalues are close to a circle.We study the expected eigenvalue density of the perturbed Jordan block in the interior of that circle and give a precise asymptotic description.; Nous étudions la distribution de valeurs propres d’un grand bloc de Jordan soumis à une petite perturbation gaussienne aléatoire. Un résultat de E. B. Davies et M. Hager montre que quand la dimension de la matrice devient grande, alors avec probabilité…

[ MATH ] Mathematics [math]Jordan matrixSpectral theoryGaussian010102 general mathematicsMathematical analysisPerturbation (astronomy)Mathematics::Spectral Theory01 natural sciences010104 statistics & probabilityMatrix (mathematics)symbols.namesakesymbolsRandom perturbations[MATH]Mathematics [math]MSC: 47A10 47B80 47H40 47A550101 mathematicsDivide-and-conquer eigenvalue algorithmSpectral theoryEigenvalue perturbationEigenvalues and eigenvectorsNon-self-adjoint operatorsMathematics
researchProduct

A Kato's second type representation theorem for solvable sesquilinear forms

2017

Kato's second representation theorem is generalized to solvable sesquilinear forms. These forms need not be non-negative nor symmetric. The representation considered holds for a subclass of solvable forms (called hyper-solvable), precisely for those whose domain is exactly the domain of the square root of the modulus of the associated operator. This condition always holds for closed semibounded forms, and it is also considered by several authors for symmetric sign-indefinite forms. As a consequence, a one-to-one correspondence between hyper-solvable forms and operators, which generalizes those already known, is established.

Pure mathematicsKato's representation theoremRepresentation theorem47A07 47A10Radon–Nikodym-like representationsApplied Mathematics010102 general mathematicsq-closed/solvable sesquilinear formRepresentation (systemics)Type (model theory)01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsOperator (computer programming)Square rootSettore MAT/05 - Analisi MatematicaDomain (ring theory)FOS: Mathematics0101 mathematicsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

On a generalisation of Krein's example

2017

We generalise a classical example given by Krein in 1953. We compute the difference of the resolvents and the difference of the spectral projections explicitly. We further give a full description of the unitary invariants, i.e., of the spectrum and the multiplicity. Moreover, we observe a link between the difference of the spectral projections and Hankel operators.

Pure mathematicsClassical exampleApplied Mathematics010102 general mathematicsFOS: Physical sciencesMultiplicity (mathematics)Mathematical Physics (math-ph)01 natural sciencesUnitary stateFunctional Analysis (math.FA)Primary 47B15 Secondary 47A55 35J25 47A10 47B35Mathematics - Functional AnalysisMathematics - Spectral Theory0103 physical sciencesFOS: MathematicsComputer Science::Symbolic Computation010307 mathematical physics0101 mathematicsSpectral Theory (math.SP)Mathematical PhysicsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

On some dual frames multipliers with at most countable spectra

2021

A dual frames multiplier is an operator consisting of analysis, multiplication and synthesis processes, where the analysis and the synthesis are made by two dual frames in a Hilbert space, respectively. In this paper we investigate the spectra of some dual frames multipliers giving, in particular, conditions to be at most countable. The contribution extends the results available in literature about the spectra of Bessel multipliers with symbol decaying to zero and of multipliers of dual Riesz bases.

Pure mathematicsApplied MathematicsZero (complex analysis)Hilbert spaceFunctional Analysis (math.FA)Dual (category theory)Multiplier (Fourier analysis)Mathematics - Functional Analysissymbols.namesakeOperator (computer programming)Dual frames Invertibility Multipliers SpectraSettore MAT/05 - Analisi MatematicaFOS: MathematicssymbolsCountable set42C15 47A10 47A12MultiplicationBessel functionMathematics
researchProduct

Localization of the spectra of dual frames multipliers

2022

This paper concerns dual frames multipliers, i.e. operators in Hilbert spaces consisting of analysis, multiplication and synthesis processes, where the analysis and the synthesis are made by two dual frames, respectively. The goal of the paper is to give some results about the localization of the spectra of dual frames multipliers, i.e. to individuate regions of the complex plane containing the spectra using some information about the frames and the symbols.

Numerical AnalysisMatematikApplied MathematicsFunctional Analysis (math.FA)spectrumMathematics - Functional Analysisdual framesSettore MAT/05 - Analisi MatematicaFOS: Mathematicsmultipliers42C15 47A10 47A12multipliers;dual frames;spectrumAnalysisMathematics
researchProduct