Search results for " 47A10"
showing 6 items of 6 documents
Operators on Partial Inner Product Spaces: Towards a Spectral Analysis
2014
Given a LHS (Lattice of Hilbert spaces) $V_J$ and a symmetric operator $A$ in $V_J$, in the sense of partial inner product spaces, we define a generalized resolvent for $A$ and study the corresponding spectral properties. In particular, we examine, with help of the KLMN theorem, the question of generalized eigenvalues associated to points of the continuous (Hilbertian) spectrum. We give some examples, including so-called frame multipliers.
Interior Eigenvalue Density of Jordan Matrices with Random Perturbations
2017
International audience; We study the eigenvalue distribution of a large Jordan block subject to a small random Gaussian perturbation. A result by E. B. Davies and M. Hager shows that as the dimension of the matrix gets large, with probability close to 1, most of the eigenvalues are close to a circle.We study the expected eigenvalue density of the perturbed Jordan block in the interior of that circle and give a precise asymptotic description.; Nous étudions la distribution de valeurs propres d’un grand bloc de Jordan soumis à une petite perturbation gaussienne aléatoire. Un résultat de E. B. Davies et M. Hager montre que quand la dimension de la matrice devient grande, alors avec probabilité…
A Kato's second type representation theorem for solvable sesquilinear forms
2017
Kato's second representation theorem is generalized to solvable sesquilinear forms. These forms need not be non-negative nor symmetric. The representation considered holds for a subclass of solvable forms (called hyper-solvable), precisely for those whose domain is exactly the domain of the square root of the modulus of the associated operator. This condition always holds for closed semibounded forms, and it is also considered by several authors for symmetric sign-indefinite forms. As a consequence, a one-to-one correspondence between hyper-solvable forms and operators, which generalizes those already known, is established.
On a generalisation of Krein's example
2017
We generalise a classical example given by Krein in 1953. We compute the difference of the resolvents and the difference of the spectral projections explicitly. We further give a full description of the unitary invariants, i.e., of the spectrum and the multiplicity. Moreover, we observe a link between the difference of the spectral projections and Hankel operators.
On some dual frames multipliers with at most countable spectra
2021
A dual frames multiplier is an operator consisting of analysis, multiplication and synthesis processes, where the analysis and the synthesis are made by two dual frames in a Hilbert space, respectively. In this paper we investigate the spectra of some dual frames multipliers giving, in particular, conditions to be at most countable. The contribution extends the results available in literature about the spectra of Bessel multipliers with symbol decaying to zero and of multipliers of dual Riesz bases.
Localization of the spectra of dual frames multipliers
2022
This paper concerns dual frames multipliers, i.e. operators in Hilbert spaces consisting of analysis, multiplication and synthesis processes, where the analysis and the synthesis are made by two dual frames, respectively. The goal of the paper is to give some results about the localization of the spectra of dual frames multipliers, i.e. to individuate regions of the complex plane containing the spectra using some information about the frames and the symbols.